Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Dermatol Sci ; 113(3): 103-112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331641

RESUMO

BACKGROUND: TET2 participates in tumor progression and intrinsic immune homeostasis via epigenetic regulation. TET2 has been reported to be involved in maintaining epithelial barrier homeostasis and inflammation. Abnormal epidermal barrier function and TET2 expression have been detected in psoriatic lesions. However, the mechanisms underlying the role of TET2 in psoriasis have not yet been elucidated. OBJECTIVE: To define the role of TET2 in maintaining epithelial barrier homeostasis and the exact epigenetic mechanism in the dysfunction of the epidermal barrier in psoriasis. METHODS: We analyzed human psoriatic skin lesions and datasets from the GEO database, and detected the expression of TET2/5-hmC together with barrier molecules by immunohistochemistry. We constructed epidermal-specific TET2 knockout mice to observe the effect of TET2 deficiency on epidermal barrier function via toluidine blue penetration assay. Further, we analyzed changes in the expression of epidermal barrier molecules by immunofluorescence in TET2-specific knockout mice and psoriatic model mice. RESULTS: We found that decreased expression of TET2/5-hmC correlated with dysregulated barrier molecules in human psoriatic lesions. Epidermal-specific TET2 knockout mice showed elevated transdermal water loss associated with abnormal epidermal barrier molecules. Furthermore, we observed that TET2 knockdown in keratinocytes reduced filaggrin expression via filaggrin promoter methylation. CONCLUSION: Aberrant epidermal TET2 affects the integrity of the epidermal barrier through the epigenetic dysregulation of epidermal barrier molecules, particularly filaggrin. Reduced TET2 expression is a critical factor contributing to an abnormal epidermal barrier in psoriasis.


Assuntos
Dioxigenases , Psoríase , Animais , Humanos , Camundongos , Dioxigenases/deficiência , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Proteínas Filagrinas , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/metabolismo , Camundongos Knockout , Psoríase/patologia
2.
Skin Res Technol ; 30(2): e13603, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332513

RESUMO

BACKGROUND: Psoriasis is a prevalent, long-term skin condition characterized by inflammation. Keratinocytes (KCs) are important effector cells that release inflammatory factors and chemokines to promote the inflammatory cascade in psoriasis. However, the mechanisms underlying the activation of KCs in psoriasis remain unclear. Livin suppresses apoptotic proteins and directly affects the growth and spread of cancer cells. Livin expression reportedly increases significantly in lesions of patients with psoriasis; however, its specific role in KC activation remains unknown. This study aimed to examine the impact of Livin on KC activation and the subsequent release of inflammatory mediators. METHODS: Immunofluorescence staining, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA), and western blotting were used to assess Livin expression in patients with psoriasis, an imiquimod (IMQ)-induced psoriasis-like mouse model, and M5-treated HaCaT cells. To investigate the role of Livin in KCs, we performed RNA sequencing and proteomic analysis of Livin-knockdown (knockdown-HaCaT) and negative control (NC-HaCaT) cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for enrichment analyses. Moreover, the effect of Livin expression on the release of inflammatory mediators in KCs was verified using ELISA. RESULTS: Livin expression was higher in KCs of patients with psoriasis than in those healthy controls. Livin expression in HaCaT cells treated with M5 increased significantly over time. Livin expression was higher in the skin lesions of the IMQ mouse model than in the control group. Proteomic analysis and RNA sequencing used to investigate the function of Livin in HaCaT cells revealed its potential role in mediating KC activation and inflammatory mediator release, which affected the pathology of psoriasis. CONCLUSIONS: Livin expression played an effect on KCs activation, which induced release of inflammatory mediators and up-regulation of keratin. This study provides a new effector molecule for the mechanism of inflammatory response in psoriasis.


Assuntos
Psoríase , Dermatopatias , Animais , Humanos , Camundongos , Proliferação de Células , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Mediadores da Inflamação/efeitos adversos , Mediadores da Inflamação/metabolismo , Queratinócitos/metabolismo , Proteômica , Psoríase/patologia , Dermatopatias/metabolismo
3.
J Cell Mol Med ; 28(4): e18124, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332512

RESUMO

UVB radiation can lead to skin photodamage, which might arise from keratinocyte (KC) activation. Nuclear factor kappa B (NF-κB) assumes an essential function in the context of UVB-triggered skin photodamage. Initiating the NF-κB cascade leads to the release of inflammatory factors from KCs. Livin can modulate both KC activation and function, yet it remains uncertain whether and how Livin regulates KC activation induced by UVB. To explore the involvement of Livin in UVB-triggered skin photodamage and its impact on skin damage through NF-κB activation. Immunofluorescence staining was used to analyse the expression of Livin in individuals with skin photodamage and in mice treated with UVB radiation. KC-specific Livin knockout (LivinΔKC ) mice and HaCaT cells with Livin knockdown were employed to examine the function of Livin in regulating KC activation induced by UVB radiation. Additionally, the impact of Livin on the NF-κB cascade during KC activation was confirmed via western blot analysis. In patients with skin photodamage, UVB-treated mice and HaCaT cells, Livin expression was reduced in KCs. LivinΔKC mice displayed heightened sensitivity to UVB radiation, resulting in more pronounced skin damage and inflammatory responses compared to the control Livinfl/fl mice. Following UVB exposure, both LivinΔKC mice and Livin-knockdown HaCaT cells released elevated levels of cytokines compared to their respective controls. Moreover, the UVB-induced activation of NF-κB in HaCaT cells was significantly enhanced following Livin knockdown. Our findings propose that Livin within KCs could contribute to reducing UVB-induced skin photodamage by regulating the NF-κB pathway.


Assuntos
NF-kappa B , Pele , Animais , Humanos , Camundongos , Queratinócitos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
4.
Cell Cycle ; 23(1): 1-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234233

RESUMO

Rheumatoid arthritis (RA) is an inflammatory disease which causes severe pain and disability. Neutrophils play essential roles in the onset and progression of RA; thus, inhibition of neutrophil activation is becoming a popular therapeutic strategy. Dehydroandrographolide has provided satisfactory outcomes in inflammatory diseases; however, its therapeutic effects and mechanism in RA are not fully understood. Leukocyte mono-immunoglobulin-like receptor 3 (LMIR3) is a negative regulator highly expressed in neutrophils. To determine whether dehydroandrographolide negatively regulated neutrophils activation via LMIR3, cytokines release and collagen-induced arthritis (CIA) rats were used in vitro and in vivo. Biacore, molecular docking analysis and molecular dynamics simulation were performed to prove the target of dehydroandrographolide. Moreover, the downstream signaling pathways of LMIR3 activation were analyzed by western blotting. Results showed that oral dehydroandrographolide administration of 2 mg/kg/day to CIA rats attenuated synovitis and bone and cartilage damage after the 28-day intervention, revealed using HE sections and micro-CT. Dehydroandrographolide significantly inhibited cytokine release and chemotaxis of LPS/TNF-α-activated neutrophils in vitro. Dehydroandrographolide inhibited neutrophils activation via binding to LMIR3. Moreover, dehydroandrographolide up-regulated the phosphorylation of SHP-1 and SHP-2, which are the essential kinases in the LMIR3 signaling pathways. This study revealed that dehydroandrographolide attenuated collagen-induced arthritis by suppressing neutrophil activation via LMIR3.


Assuntos
Artrite Experimental , Artrite Reumatoide , Diterpenos , Ratos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Ativação de Neutrófilo , Simulação de Acoplamento Molecular , Artrite Reumatoide/tratamento farmacológico , Citocinas/metabolismo
5.
J Control Release ; 367: 197-208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246205

RESUMO

Melanoma, one of the most devastating forms of skin cancer, currently lacks effective clinical treatments. Delivery of functional genes to modulate specific protein expression to induce melanoma cell apoptosis could be a promising therapeutic approach. However, transfecting melanoma cells using non-viral methods, particularly with cationic polymers, presents significant challenges. In this study, we synthesized three branched poly(ß-amino ester)s (HPAEs) with evenly distributed branching units but varying space lengths through a two-step "oligomer combination" strategy. The unique topological structure enables HPAEs to condense DNA to form nano-sized polyplexes with favorable physiochemical properties. Notably, HPAEs, especially HPAE-2 with intermediate branching unit space length, demonstrated significantly higher gene transfection efficiency than the leading commercial gene transfection reagent, jetPRIME, in human melanoma cells. Furthermore, HPAE-2 efficiently delivered the Bax-encoding plasmid into melanoma cells, leading to a pronounced pro-apoptotic effect without causing noticeable cytotoxicity. This study establishes a potent non-viral platform for gene transfection of melanoma cells by harnessing the distribution of branching units, paving the way for potential clinical applications of gene therapy in melanoma treatment.


Assuntos
Ésteres , Melanoma , Polímeros , Humanos , Transfecção , Ésteres/química , Melanoma/genética , Melanoma/terapia , Apoptose , Técnicas de Transferência de Genes
6.
J Control Release ; 367: 158-166, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253205

RESUMO

Mast cells (MCs) are primary effector cells involved in immediate allergic reactions. Mas-related G protein-coupled receptor-X2 (MrgX2), which is highly expressed on MCs, is involved in receptor-mediated drug-induced pseudo-anaphylaxis. Many small-molecule drugs and peptides activate MrgX2, resulting in MC activation and allergic reactions. Although small-molecule drugs can be identified using existing MrgX2 ligand-screening systems, there is still a lack of effective means to screen peptide ligands. In this study, to screen for peptide drugs, the MrgX2 high-affinity endogenous peptide ligand substance P (SP) was used as a recognition group to design a fluorescent peptide probe. Spectroscopic properties and fluorescence imaging of the probe were assessed. The probe was then used to screen for MrgX2 agonists among peptide antibiotics. In addition, the effects of peptide antibiotics on MrgX2 activation were investigated in vivo and in vitro. The environment-sensitive property of the probe was revealed by the dramatic increase in fluorescence intensity after binding to the hydrophobic ligand-binding domain of MrgX2. Based on these characteristics, it can be used for in situ selective visualization of MrgX2 in live cells. The probe was used to screen ten types of peptide antibiotics, and we found that caspofungin and bacitracin could compete with the probe and are hence potential ligands of MrgX2. Pharmacological experiments confirmed this hypothesis; caspofungin and bacitracin activated MCs via MrgX2 in vitro and induced local anaphylaxis in mice. Our research can be expected to provide new ideas for screening MrgX2 peptide ligands and reveal the mechanisms of adverse reactions caused by peptide drugs, thereby laying the foundation for improving their clinical safety.


Assuntos
Anafilaxia , Hipersensibilidade a Drogas , Camundongos , Animais , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/metabolismo , Ligantes , Bacitracina/metabolismo , Bacitracina/farmacologia , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/metabolismo , Caspofungina/metabolismo , Caspofungina/farmacologia , Peptídeos/farmacologia , Antibacterianos/farmacologia , Mastócitos/metabolismo , Degranulação Celular/fisiologia
7.
J Invest Dermatol ; 144(1): 53-62.e2, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482287

RESUMO

Atopic dermatitis (AD) is a common chronic inflammatory skin disease characterized by T helper 2 inflammation as the core pathogenic mechanism. MRGPRX2 plays a key role in nonhistamine allergies and neuroimmune mechanisms in chronic inflammatory dermatitis. However, the role of MRGPRX2 in AD and the development of type 2 inflammation is not yet clear. This study aimed to define the role of MRGPRX2 in type 2 inflammation development and cytokine release in AD by determining its levels in patients with AD and healthy controls. Furthermore, MrgprB2-conditional knockout (MrgprB2-/-) and wild-type mice were used to construct an MC903-induced AD mouse model to observe skin inflammation and cytokine release. Tryptase and its antagonist were applied separately to MrgprB2-/- mice with AD and wild-type mice with AD to confirm the role of the MRGPRB2-tryptase axis in the development of type 2 inflammation in AD. We found that AD severity and type 2 cytokine levels were not associated with IgE levels but were associated with MRGPRX2/MRGPRB2 expression. MrgprB2-/- mice with AD showed milder phenotypes and inflammatory infiltration in the skin than wild-type mice with AD. Tryptase released by MRGPRX2/MRGPRB2 activation is involved in the release of type 2 cytokines, which contributes to inflammatory development in AD.


Assuntos
Dermatite Atópica , Animais , Humanos , Camundongos , Citocinas/metabolismo , Dermatite Atópica/patologia , Inflamação/patologia , Mastócitos , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Triptases/metabolismo
8.
J Dermatol Sci ; 112(3): 128-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953179

RESUMO

BACKGROUND: Topical tacrolimus, although widely used in the treatment of dermatoses, presents with an immediate irritation on initial application resembling a pseudo-allergic reaction. Mas-related G protein-coupled receptor X2 (MRGPRX2) in mast cells (MCs) mediates drug-induced pseudo-allergic reaction and immunoglobulin E (IgE)-independent pruritis in chronic skin diseases. However, the immunosuppression mechanism of tacrolimus on MCs via MRGPRX2 has not been reported. OBJECTIVE: To investigate the role of MRGPRX2 and the mechanism of action of tacrolimus on its short-term and long-term applications. METHODS: Wild-type mice, KitW-sh/W-sh mice, and MrgprB2-deficient (MUT) mice were used to study the effect of tacrolimus on in vivo anaphylaxis model. LAD2 cells and MRGPRX2-knockdown LAD2 cells were specifically used to derive the associated mechanism of the tacrolimus effect. RESULTS: Short-term application of tacrolimus triggers IgE-independent activation of MCs via MRGPRX2/B2 in both in vivo and in vitro experiments. Tacrolimus binds to MRGPRX2, which was verified by fluorescently labeled tacrolimus in cells. On long-term treatment with tacrolimus, the initial allergic reaction fades away corresponding with the downregulation of MRGPRX2, which leads to decreased release of inflammatory cytokines (P < 0.05 to P < 0.001). CONCLUSION: Short-term treatment with tacrolimus induces pseudo-allergic reaction via MRGPRX2/B2 in MCs, whereas long-term treatment downregulates expression of MRGPRX2/B2, which may contribute to its potent immunosuppressive effect in the treatment of various skin diseases.


Assuntos
Anafilaxia , Hipersensibilidade Tardia , Dermatopatias , Animais , Camundongos , Tacrolimo/efeitos adversos , Mastócitos , Anafilaxia/induzido quimicamente , Anafilaxia/metabolismo , Inflamação/metabolismo , Imunoglobulina E , Receptores Acoplados a Proteínas G/metabolismo , Dermatopatias/metabolismo , Receptores de Neuropeptídeos/metabolismo , Degranulação Celular
9.
Front Microbiol ; 14: 1227309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621397

RESUMO

Introduction: The role of gut microbiome dysbiosis in the pathogenesis of psoriasis has gained increasing attention in recent years. Secukinumab, targeting interleukin (IL)-17, has a promising efficacy in psoriasis treatment. However, it remains unclear the gut microbiota alteration and related functional changes caused by successful secukinumab therapy in psoriatic patients. Methods: In our study, we compared the fecal microbiome profile between psoriatic patients after secukinumab successful treatment (AT) and the other two groups, psoriatic patients without therapy (BT) and healthy people (H), respectively, by using next-generation sequencing targeting 16S ribosomal RNA. Then, shotgun metagenomic sequencing was first used to characterize bacterial gut microbial communities and related functional changes in the AT group. Results: We found that the diversity and structure of the microbial community in the AT group were significantly changed compared to those in the BT group and the H group. The AT group showed a microbiota profile characterized by increased proportions of the phylum Firmicute, families Ruminococcaceae, and a reduction in the phylum Bacteroidota (elevated F/B ratio). To detect functional alteration, we discovered that secukinumab treatment may construct a more stable homeostasis of the gut microbiome with functional alteration. There were different KEGG pathways, such as the downregulated cardiovascular diseases pathway and the upregulated infectious diseases in the AT group. By metagenomic analysis, the metabolic functional pathway was changed after secukinumab therapy. Discussion: It seems that gut microbiota investigation during biologic drug treatment is useful for predicting the efficacy and risks of drug treatment in disease.

10.
ACS Appl Mater Interfaces ; 15(36): 42130-42138, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642943

RESUMO

Poly(ß-amino ester)s (PAEs) have been widely developed for gene delivery, and hydrophobic modification can further enhance their gene transfection efficiency. However, systematic manipulation of amphiphilicity of PAEs through copolymerization with hydrophobic monomers is time-consuming and, to some extent, uncontrollable. Here, a modular strategy is developed to manipulate the amphiphilicity of the PAE/DNA polyplexes. A hydrophobic polymer (DD-C12-122) and a hydrophilic polymer (DD-90-122) are synthesized separately and used as a hydrophobic module and a hydrophilic module, respectively. The amphiphilicity of polyplexes could be manipulated by changing the ratio of the hydrophobic module and hydrophilic module. Using the modular strategy, the PAE/DNA polyplexes with the highest gene transfection efficiency and safety profile as well as possible mechanisms are identified. The modular strategy provides a novel way to engineer the hydrophobicity of PAEs to improve their gene transfection and can be easily generalized and potentially extended to other polymeric gene delivery systems.


Assuntos
DNA , Poli A , DNA/genética , Ésteres , Polímeros , Transfecção
11.
Front Immunol ; 14: 1207249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404822

RESUMO

Mast cell (MC) activation is implicated in the pathogenesis of multiple immunodysregulatory skin disorders. Activation of an IgE-independent pseudo-allergic route has been recently found to be mainly mediated via Mas-Related G protein-coupled receptor X2 (MRGPRX2). Ryanodine receptor (RYR) regulates intracellular calcium liberation. Calcium mobilization is critical in the regulation of MC functional programs. However, the role of RYR in MRGPRX2-mediated pseudo-allergic skin reaction has not been fully addressed. To study the role of RYR in vivo, we established a murine skin pseudo-allergic reaction model. RYR inhibitor attenuated MRGPRX2 ligand substance P (SP)-induced vascular permeability and neutrophil recruitment. Then, we confirmed the role of RYR in an MC line (LAD2 cells) and primary human skin-derived MCs. In LAD2 cells, RYR inhibitor pretreatment dampened MC degranulation (detected by ß-hexosaminidase retlease), calcium mobilization, IL-13, TNF-α, CCL-1, CCL-2 mRNA, and protein expression activated by MRGPRX2 ligands, namely, compound 48/80 (c48/80) and SP. Moreover, the inhibition effect of c48/80 by RYR inhibitor was verified in skin MCs. After the confirmation of RYR2 and RYR3 expression, the isoforms were silenced by siRNA-mediated knockdown. MRGPRX2-induced LAD2 cell exocytosis and cytokine generation were substantially inhibited by RYR3 knockdown, while RYR2 had less contribution. Collectively, our finding suggests that RYR activation contributes to MRGPRX2-triggered pseudo-allergic dermatitis, and provides a potential approach for MRGPRX2-mediated disorders.


Assuntos
Cálcio , Dermatite Atópica , Humanos , Animais , Camundongos , Cálcio/metabolismo , Rianodina/metabolismo , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Mastócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dermatite Atópica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/metabolismo
12.
Int J Dermatol ; 62(7): 900-909, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36916467

RESUMO

BACKGROUND: Activation of keratinocytes (KCs) is the main pathological feature of psoriasis. KCs recruit neutrophils by releasing various antimicrobial peptides and chemokines, which is also related to the expression of KC adhesion molecules. However, the regulatory mechanism governing their expression is still unclear. Livin, an inhibitor of the apoptosis protein family member involved in proliferation and metastasis of tumor cells, is significantly increased in psoriatic lesions. OBJECTIVES: The aim of this study was to investigate the role of Livin in regulating adhesion molecule expression in KCs and release of chemokines that promote the activation and adhesion of neutrophils. METHODS: The expression of Livin in psoriasis patients, imiquimod mouse model, and the combination of IL-17 alpha, IL-22, IL-1 alpha, OSM, and TNF-α (Mix M5)-treated HaCaT cells were detected by immunofluorescence staining, RT-qPCR, and ELISA. Livin-overexpression and knockdown in HaCaT cells transfected with HIV-1-based lentiviral vectors were used to study the function of Livin using RNA-seq. Moreover, differences in the expression of HaCaT cell adhesion molecules after regulation of Livin expression and activation of neutrophils in the co-culture model were verified. RESULTS: Livin was upregulated in the KCs of psoriasis patients, imiquimod mouse model and Mix M5-treated HaCaT cells compared with the control groups. Livin in HaCaT cells might regulate the expression of adhesion molecules in KCs. CONCLUSION: Thus, Livin may be a key effector molecule that regulates the expression of adhesion molecules in KCs and promotes the activation and adhesion of neutrophils.


Assuntos
Psoríase , Animais , Humanos , Camundongos , Apoptose , Moléculas de Adesão Celular , Linhagem Celular , Proliferação de Células , Imiquimode , Queratinócitos/metabolismo , Psoríase/patologia , Regulação para Cima
13.
Inflammopharmacology ; 31(3): 1329-1339, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36745245

RESUMO

Psoriasis is a chronic, relapsing, immune-mediated, and papulosquamous skin disorder. Excessive mast cell activation, in psoriatic lesions, contributes to inflammation. Various endogenous peptides can participate in the pathogenesis of inflammatory diseases by activating mast cells. Suprabasin (SBSN) is expressed in multiple epithelial tissues and it regulates the normal epidermal barrier function. We have recently shown that suprabasin-derived polypeptides, SBSN(50-63), are significantly increased in psoriatic lesions, through differential peptide analysis. This study was conducted to clarify whether SBSN(50-63) plays a pivotal role in activating mast cells and mediating proinflammatory cytokines and chemokines production in psoriasis. The increased expression of SBSN in psoriatic lesions was confirmed by bioinformatics analysis, PCR and ELISA. Wild-type mice injected subcutaneously with SBSN(50-63) exhibited infiltration of inflammatory cells and the release of cytokines in vivo. SBSN(50-63) stimulated mouse primary mast cells (MPMC) and the laboratory of allergic disease 2 (LAD2) human mast cells to produce more inflammatory mediators than the control group, which were measured ex vivo and in vitro. Toll-like receptor 4 was identified as the receptor of SBSN on mast cells by molecular docking analysis, molecular dynamics simulation, and siRNA transfection. Collectively, SBSN(50-63) could activate mast cells through TLR4, which may increase the inflammatory response in psoriasis.


Assuntos
Mastócitos , Psoríase , Humanos , Animais , Camundongos , Mastócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Simulação de Acoplamento Molecular , Citocinas/metabolismo , Psoríase/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
14.
Exp Dermatol ; 32(4): 436-446, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36463492

RESUMO

Hydroquinone (HQ) is one of the most effective drugs to treat hyperpigmentary disorders, but often causes skin irritation in clinic. Mast cell plays an important role in contact dermatitis and triggering pseudo-allergic reactions via MRGPRX2. Whether HQ-induced skin irritant reaction through activating mast cells via MRGPRX2 remains unknown. To investigate the role of mast cells in HQ-induced skin irritant reaction and verify whether MRGPRX2 participated in the HQ effect on mast cells which contributed to the pathogenesis of skin irritant reaction, a mouse model of HQ-induced skin irritation was established to observe the local and systemic inflammation associated with mast cell receptor MrgprB2. Human mast cell LAD2 was used to verify the effect of HQ on mast cells via MRGPRX2 by knocking down with siRNA. As a result, mast cells were involved in the development of HQ-induced irritant reaction, and local inflammation is closely related to mast cell receptor MrgprB2. HQ could activate mast cells via MRGPRX2, causing changes in calcium concentration, degranulation and release of inflammatory cytokines which lead to skin irritant reaction. In conclusion, HQ-induced skin irritant reaction could be skin pseudo-allergic reactions achieved by activating mast cells via MRGPRX2.


Assuntos
Dermatite Atópica , Hipersensibilidade , Animais , Camundongos , Humanos , Mastócitos/patologia , Irritantes/toxicidade , Hidroquinonas/efeitos adversos , Receptores Acoplados a Proteínas G/genética , Inflamação/patologia , Dermatite Atópica/patologia , Degranulação Celular , Proteínas do Tecido Nervoso/genética , Receptores de Neuropeptídeos/genética
15.
Phytother Res ; 37(1): 124-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36116140

RESUMO

6-Methoxydihydrosanguinarine (6-MDS) is a natural benzophenanthridine alkaloid extracted from Hylomecon japonica (Thunb.) Prantl. It is the first time to explore the effect and mechanism of 6-MDS in breast cancer. Network pharmacology, molecular docking, and molecular dynamics simulation technology were adopted to identify the potential targets and pathways of 6-MDS in breast cancer. Besides, cell proliferation, apoptosis, and western blotting assays were conducted to investigate the effect of 6-MDS on MCF-7 cells. Network pharmacology, molecular docking, and molecular dynamics simulation results confirmed the effect of 6-MDS on resisting breast cancer via the PI3K/AKT/mTOR signaling pathway. In addition, the functional experiments results demonstrated that 6-MDS inhibited proliferation and induced apoptosis and autophagy. The autophagy inhibitor chloroquine and the silence of Atg5 augmented the effect of 6-MDS on promoting apoptosis. Furthermore, 6-MDS suppressed the PI3K/AKT/mTOR signaling pathway, and the PI3K inhibitor LY294002 enhanced these changes and promoted the 6-MDS pro-apoptotic and autophagy effects. 6-MDS triggered the generation of reactive oxygen species. The pretreatment with antioxidant N-acetyl-L-cysteine reversed the changes induced by 6-MDS, including increases in apoptosis and autophagy and inhibition of the PI3K/AKT/mTOR pathway. In conclusion, 6-MDS induces the apoptosis and autophagy of MCF-7 cells by ROS accumulation to suppress the PI3K/AKT/mTOR signaling pathway.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Benzofenantridinas/farmacologia , Benzofenantridinas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia
16.
Immunol Invest ; 52(2): 178-193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36511894

RESUMO

Psoriasis is a chronic inflammatory skin disease. Mast cells are significantly increased and activated in psoriatic lesions and are involved in psoriatic inflammation. Some endogenous substances can interact with the surface receptors of mast cells and initiate the release of downstream cytokines that participate in inflammatory reactions. Neuroblast differentiation-associated protein (AHNAK) is mainly expressed in the skin, esophagus, kidney, and other organs and participates in various biological processes in the human body. AHNAK and its derived peptides have been reported to be involved in the activation of mast cells and other immune processes. This study aimed to investigate whether AHNAK (5758-5775), a neuroblast differentiation-associated protein-derived polypeptide, could be considered a new endogenous substance in psoriasis patients, which activates mast cells and induces the skin inflammatory response contributing to psoriasis. Wild-type mice were treated with AHNAK(5758-5775) to observe the infiltration of inflammatory cells in the skin and cytokine release in vivo. The release of inflammatory mediators by mouse primary mast cells and the laboratory of allergic disease 2 (LAD2) human mast cells was measured in vitro. Molecular docking analysis, molecular dynamics simulation, and siRNA transfection were used to identify the receptor of AHNAK(5758-5775). AHNAK(5758-5775) could cause skin inflammation and cytokine release in wild-type mice and activated mast cells in vitro. Moreover, suppression of tumorigenicity 2 (ST2) might be a key receptor mediating AHNAK(5758-5775)'s effect on mast cells and cytokine release. We propose a novel polypeptide, AHNAK(5758-5775), which induces an inflammatory reaction and participates in the occurrence and development of psoriasis by activating mast cells.


Assuntos
Dermatite , Psoríase , Humanos , Camundongos , Animais , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Mastócitos , Simulação de Acoplamento Molecular , Inflamação/metabolismo , Citocinas/metabolismo , Diferenciação Celular , Proteínas de Membrana/genética , Proteínas de Neoplasias/metabolismo
17.
Immunol Lett ; 251-252: 29-37, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191776

RESUMO

BACKGROUND: Psoriasis is a chronic inflammatory disease. Mast cells are significantly increased and activated in the lesions of patients with psoriasis, contributing to psoriatic inflammation. Dermcidin (DCD) is a natural antibacterial peptide secreted by sweat glands and is usually transported to the epidermal surface by sweat. Whether DCD is involved in mast cell activation remains unclear and the mechanisms by which DCD is involved in skin inflammatory reactions require further investigation. METHODS: We investigated whether dermcidin-derived polypeptides DCD(86-103) activate mast cells and induce skin inflammatory reactions that contribute to psoriasis. Wild-type mice were treated with DCD(86-103) to observe the inflammatory reactions in the skin and cytokine release in vivo. The release of inflammatory mediators by mouse primary mast cells and LAD2 cells was measured in vitro. Molecular docking analysis, molecular dynamics simulation, and siRNA transfection were used to identify DCD(86-103). RESULTS: DCD(86-103) caused a skin inflammatory reaction in wild-type mice via cytokine release. Moreover, DCD(86-103) directly activated mast cells and induced cytokine release in vitro. ST2 may be a key receptor that mediates the activation effect of DCD(86-103) on mast cells leading to cytokine release. CONCLUSION: DCD(86-103) may have induced an inflammatory reaction and participated in the occurrence and development of psoriasis.


Assuntos
Dermocidinas , Psoríase , Camundongos , Animais , Mastócitos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Simulação de Acoplamento Molecular , Peptídeos , Citocinas , Inflamação
18.
Int Immunopharmacol ; 110: 109063, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35853276

RESUMO

Mast cells (MCs) are main effector cells in chronic spontaneous urticaria (CSU). Both Fc epsilon RI (FcεRΙ)- and MAS-related G coupled receptor-X2 (MRGPRX2)-mediated MC activations affect CSU course. Leukocyte mono-immunoglobulin-like receptor 3 (CD300f) has been shown to regulate FcεRΙ activation. However, no study has verified CD300f is a target to cure CSU. Therefore this study aimed to verify whether clarithromycin (CLA) regulates FcεRΙ- and MRGPRX2-mediated MC activations via CD300f and shows therapeutic effect on CSU. The target of CLA was verification. CLA inhibited FcεRΙ- and MRGPRX2-mediated MC activations were shown in vivo and in vitro. A single-center, self-comparison study was performed, and CLA-treated CSU was investigated in 28 patients who were not sensitive to the third-generation antihistamines. Serum inflammatory mediators in patients before and after CLA administration were analyzed. CLA effectively inhibited type Ι anaphylactic reactions and pseudo-allergic reactions in mice. Moreover, CLA inhibited FcεRΙ- and MRGPRX2-mediated MC signaling pathway activation. Regulatory effects of CLA were decreased significantly after CD300f knockdown. CLA effectively alleviated the symptoms of wheal and itch and reduced serum cytokine levels in patients. CLA negatively regulated FcεRΙ- and MRGPRX2-mediated MC activation via CD300f and showed significant therapeutic effect on CSU.


Assuntos
Anafilaxia , Urticária Crônica , Animais , Degranulação Celular , Urticária Crônica/tratamento farmacológico , Claritromicina , Mastócitos , Camundongos , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos
19.
Phytother Res ; 36(5): 2173-2185, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35312106

RESUMO

Mas-related G protein-coupled receptor X2 (MRGPRX2) mediates mast cells (MCs) activation, which is a key target for the treatment of allergic diseases. However, there are few drugs targeting MRGPRX2. Leukocyte mono-immunoglobulin-like receptor 3 (CD300f) is a negative regulator of FcεRΙ-mediated MC activation. However, the regulatory effect of CD300f on MRGPRX2 remains unclear. Dehydroandrographolide (DA) is a main contributor of Andrographis paniculata (Burm.f.) Nees (family: Acanthaceae) have been shown to inhibit type I hypersensitivity. The aim of this study was to determine whether DA negatively regulated MRGPRX2-mediated MC activation via CD300f and showed therapeutic effect on pseudo-allergic reactions. Mouse allergic models and MC degranulation were detected in vivo and in vitro, and inflammatory mediators were detected. siRNA interference and Biacore were used to verify the target. DA inhibited pseudo-allergic reactions by reducing vasodilation and serum cytokine levels in mice and inhibited MRGPRX2-mediated MC activation. The regulatory effect of DA was significantly decreased after the knockdown of CD300f expression. Moreover, DA upregulated the phosphorylation level of Src homology region 2 domain-containing phosphatase (SHP)-1 and SHP-2, which are key kinases in the negative regulatory signaling pathways associated with CD300f. In conclusion, DA negatively regulates MRGPRX2-mediated MC activation via CD300f to inhibit pseudo-allergic reactions.


Assuntos
Hipersensibilidade , Animais , Degranulação Celular , Modelos Animais de Doenças , Diterpenos , Hipersensibilidade/tratamento farmacológico , Mastócitos , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo
20.
Phytother Res ; 36(5): 2197-2206, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35315143

RESUMO

Luteolin is a flavonoid found in many fruits, vegetables, and herbs. The antiinflammatory effects of luteolin have been reported. In this study, the effect of luteolin on allergic diseases and the underlying molecular mechanism were investigated. We found that luteolin inhibits Fc epsilon RΙ (FcεRΙ)- and Mas-related G protein-coupled receptor X2 (MRGPRX2)-mediated mast cells (MCs) activation, including degranulation and release of cytokines in vitro. Moreover, luteolin reduces the degree of swelling and Evans blue exudation of mice paw in a dose-dependent manner. The concentrations of histamine, TNF-α, MCP-1, IL-8, and IL-13 in mice serum are also decreased by luteolin administration. Our study reveals that luteolin can inhibit FcεRΙ- and MRGPRX2-mediated allergic responses in vivo and in vitro, and our results discover luteolin inhibited mast cells mediated anaphylactic reaction by inhibiting the phosphorylation level of PLCγ.


Assuntos
Anafilaxia , Sinalização do Cálcio , Anafilaxia/tratamento farmacológico , Animais , Cálcio/metabolismo , Degranulação Celular , Linhagem Celular , Luteolina/farmacologia , Mastócitos , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...